

A Comparison of the Performance
of Two Popular Symmetric

Multiprocessors When Used
to Run High Performance
Computing Applications

by Daniel M. Pressel, Stephen Schraml, Steven Thompson,
Dixie Hisley, Punyam Satya-narayana, Michael Knowles,

and Darren M. Wah

ARL-TR-2476 March 2002

Approved for public release; distribution is unlimited.

NOTICES

Disclaimers

The findings in this report are not to be construed as an official Department of
the Army position unless so designated by other authorized documents.

Citation of manufacturer’s or trade names does not constitute an official
endorsement or approval of the use thereof.

Destroy this report when it is no longer needed. Do not return it to the
originator.

Army Research Laboratory
Aberdeen Proving Ground, MD 21005-5067

ARL-TR-2476 March 2002

A Comparison of the Performance
of Two Popular Symmetric
Multiprocessors When Used
to Run High Performance
Computing Applications

Daniel M. Pressel and Dixie Hisley
Computational and Information Sciences Directorate, ARL

Stephen Schraml
Weapons and Materials Research Directorate, ARL

Steven Thompson, Punyam Satya-narayana,
and Michael Knowles
Raytheon Systems Company
Approved for public release; distribution is unlimited.

Abstract

Traditionally, symmetric multiprocessors have used modest numbers of
processors. Since many of them were bus-based systems, they inherently lacked
scalability to what might be referred to as moderate-sized systems. With the
advent of the Sun HPC 10000 and the SGI Origin, we now have symmetric
multiprocessors that have successfully scaled to moderate-sized systems. In fact,
SGI has had some success at scaling the Origin into the lower end of the range of
large systems. The first symmetric multiprocessor to make that claim was the
Convex Exemplar. But based on our experience at the Distributed Center located
at NRAD, San Diego, CA (now the Naval Command Control and Ocean
Surveillance Center), its overall performance and scalability left something to be
desired.

This report presents the results from runs involving a variety of programs on the
SGI Origins and Sun HPC 10000s located at the U.S. Army Research Laboratory
(ARL)-MSRC, the Naval Research Laboratory (NRL-DC), Washington, DC, and
other places. Some of these codes (e.g., F3D) are shared memory codes using
OPENMP or its predecessors. The remaining codes use message passing (mostly
MPI, but one PVM code was tested as well). Additionally, a limited number of
runs were made with the CTH code when using processors on more than one
Sun HPC 10000. While most of these codes ran well, some codes did require
modifications. Additionally, in the process of making these measurements, the
authors gained useful insights as to what does and does not work well on these
systems.

 ii

Acknowledgments

The authors thank Dale Shires, Raju Namburu, and Ram Mohan of the
U.S. Army Research Laboratory for their input and Marek Behr, formerly of the
U.S. Army High Performance Computing Research Center (AHPCRC), for
sharing his results. We also thank our many colleagues who worked with us
over the years on our research projects, helping us to collect these data and
prepare this report. We would also like to thank the employees of Business Plus,
especially Claudia Coleman and Maria Brady, who assisted in the preparation
and editing of this report.

Special thanks to Tom Kendall, Denice Brown, and the entire systems staff at the
ARL-MSRC for their support of the various projects for which these runs were
originally done.

This work was made possible through a grant of computer time by the
Department of Defense (DOD) High Performance Computing Modernization
(HPCM) Program. Additionally, some of the results mentioned in this work
came from projects that were funded as part of the Common High Performance
Computing Software Support Initiative (CHSSI) administered by the DOD
HPCM Program.

Note: Definitions in boldface text can be found in the Glossary.

 iii

INTENTIONALLY LEFT BLANK.

 iv

Contents

Acknowledgments iii

List of Figures vii

List of Tables ix

1. Introduction 1

2. Brief Observations 3

3. Performance 4

4. Summary 5

5. References 15

Glossary 17

Distribution List 19

Report Documentation Page 23

 v

INTENTIONALLY LEFT BLANK.

 vi

List of Figures

Figure 1. CTH run times scaling the data set size in proportion to the number
of processors used (data set supplied by Raju Namburu of the U.S. Army
Research Laboratory, Aberdeen Proving Ground, MD)...................................... 6

Figure 2. CTH run times (data set supplied by Steve Schraml of the U.S.
Army Research Laboratory, Aberdeen Proving Ground, MD). 6

Figure 3a. The performance of the shared memory version of the F3D code
when run on modern scalable SMPs (1-million grid point test case)................. 7

Figure 3b. The performance of the distributed memory version of the F3D
code when run on a modern scalable SMP/MPPs (1-million grid point
test case). ... 7

Figure 4. The performance of the shared memory version of the F3D code
when run on modern scalable SMPs (59-million grid point test case)............... 8

Figure 5. The effect on performance and the consumption of CPU time from
running a parallel job on an overloaded HP V-Class... 8

Figure 6. The effect on performance and the consumption of CPU time from
running a parallel job on an overloaded SGI Origin 2000. 9

 vii

INTENTIONALLY LEFT BLANK.

 viii

List of Tables

Table 1. Miscellaneous benchmarking runs. ... 9
Table 2. CTH benchmark runs. ... 10
Table 3. Additional CTH results. .. 11
Table 4. The performance of various versions of the F3D code when run on

modern scalable systems (1-million grid point test case). 12
Table 5. The performance of the shared memory version of the F3D code

when run on modern scalable SMPs (59-million grid point test case)............. 13
Table 6. The performance of the shared memory version of the F3D code

when run on modern scalable SMPs (206-million grid point test case)........... 13
Table 7. A comparison of the performance of the shared memory

implementation of the CFD code Overflow and the PVM implementation
of the same code. ... 13

Table 8. The performance of LES (a CFD code using direct simulation of
large eddies). .. 14

Table 9. The effect on performance and the consumption of CPU time from
running a parallel job on an overloaded HP V-Class... 14

Table 10. The effect on performance and the consumption of CPU time from
running a parallel job on an overloaded SGI Origin 2000. 14

 ix

INTENTIONALLY LEFT BLANK.

 x

1. Introduction

Several supercomputer architectures are viable today. MPPs, such as the Cray
T3E, offer a large number of processors, each with its own nonshared memory.
In MPP machines, when one processor needs to access data in the memory of
another processor, the processor that ʺowns‶ the data must explicitly send the
data to the requesting processor.*

In contrast to distributed memory architectures are shared multiprocessor SMP
machines, such as the Sun E10000, which share memory among all the
processors. In between these two examples is the SMP cluster (such as an IBM
SP). Here, a small number (e.g., 2–16 in the various implementations of the IBM
SPs configured with SMP nodes) of processors share memory, and the machine is
made up of a large number of these SMP nodes. As in more traditional MPPs,
explicit cooperation between two processors is required to transfer data from one
SMP node to another.

Another intermediate architecture is the cc-NUMA machine, such as the SGI
Origin 2000, where all the memory is logically shared but physically distributed.
Here, two processors (one node) share local memory, but any processor can
access all memory locations in the machine without the aid of any other
processor. There can be significant differences in the designs and
implementations of this class of system from vendor to vendor. As a result, some
systems are much better suited for certain classes of problems—systems from
SGI are heavily marketed in the scientific computing market, while systems from
HP, Sequent, and Data General are more frequently marketed to the
commercial/database market.

Several programming models exist today, and each is supported on one or more
computer architectures. While MPI was developed for distributed memory
machines (MPPs), it can and has been implemented on SMP and shared memory
machines. Writing shared memory code is perhaps easier than writing MPI
code. But many codes today are written in MPI due to the popularity of the MPP
machines for the last several years. When an MPI version of a code already
exists, the programmer might as well consider using it, even if it would not be
their choice if writing the code from scratch. So then it becomes a performance
question as to whether a shared memory version or an MPI version of the code is

* When using SHMEM (or equivalent) calls on systems that support them, programs may

explicitly instruct processors to either put data into the memory of other nodes, or get data from
the memory of remote nodes. However, this is very different from cache-coherent shared-memory
symmetric multiprocessors, where the data resides in a globally accessible/coherent memory
system accessed automatically using standard load and store instructions.

 1

most suitable on a non-MPP machine that provides efficient support for MPI, as
almost all machines now do.

As the performance runs presented in this report show, no single machine has a
monopoly on the best performance with all programming models. While the
Cray T3E does very well on MPI codes, it cannot run most shared memory codes.
While some other machines can run all programming models, their performance
varies, with each machine performing best on one code or another.

The purpose of this report is not to explain the results or conclude that one
machine is better than another. Rather, its sole purpose is to document the
results that different groups have reported, so readers are better equipped to
come to their own conclusions about the merits of the hardware, programming
paradigms, and other related issues. Furthermore, while some of the codes
mentioned in this report were tuned for one or more of these machines, tuning
can be a major undertaking. As a result, for HPC codes that are commercially
available and/or maintained by other sites, the authors have little or no ability to
tune them for the specific machines. Instead, the authors of those codes tuned
their own codes.

The authors made these measurements as unbiasedly as possible. In fact, many
of these results came from benchmarking efforts associated with procurement
efforts (all such data reported in this report came from runs done in-house).
Additionally, selecting which results to report was based on the perceived
importance and merits of the codes in question; no results were excluded from
this report because they violated a preconceived notion. As such, there are
examples of different machines excelling for different codes. Some readers may
wish to consider issues such as cost effectiveness, but this report does not include
any cost data. Most likely, the faster machine is not always the most cost
effective.

Other issues not addressed in this report or only briefly addressed are as follows:

 (1) the stability of systems,

 (2) the scalability of systems to very large numbers of processors,

 (3) problems with the compilers and/or the operating systems,

 (4) the relative merits of the input/output (I/O) systems,

 (5) issues involving the queuing of jobs,

 (6) the requirements of the highly varied user community that uses the
resources provided by the DOD HPCM Program, and

 (7) performance, profiling, and debugging tools.

 2

2. Brief Observations

The following observations have been collected from a number of sources.

 • HPF runs better on the SGI Origin than on the IBM SP (Wierschke 1997).

 • HPF runs best on the Cray T3E since the Portland Group first implements
new ideas on it (Shires 2000).

 • In theory, jobs that run well on the SGI Origin should run well on the Sun
HPC 10000. In practice, some codes would not compile, others would not
run (at first), and many required some degree of tuning.

 • Care should be taken to avoid ʺoverloading‶ (more processes/threads
actively running than there are processors) any of the shared memory
systems, since overloading can result in significant performance
degradation and a significant increase in CPU time.

 • By itself, automatic parallelization is frequently of limited value; however,
it may improve the performance of some programs parallelized using
compiler directives.

 • Many codes run well on either the Sun or SGI systems, showing
reasonable levels of performance and scalability.

 • Some codes will show significantly better per processor and/or overall
performance on the SGI Origin than on either the Cray T3E or the IBM SP
with P2SC processors.

 • The performance of the Sun HPC 10000 is frequently reported to be
between that of the SGI Origin 2000 with 300-MHz R12000 processors and
the SGI Origin 2000 with 195-MHz R10000 processors.

 • For some vectorizable codes, the shared memory programming paradigm
is an excellent choice for parallelizing programs that are difficult to
parallelize.

 • For some codes, HPF is still the most natural programming paradigm
(Mohan 1999).

 • For projects requiring high levels of scalability (e.g., 128 or more
processors), the IBM SP or the Cray T3E are better choices
(Namburu 1999).

 • Large MPPs tend to have stability problems; 128-processor Origins are
particularly susceptible to periods of instability.

 3

 • Some performance differences are caused by design tradeoffs. The data
show that some of these design tradeoffs sacrifice efficiency for peak speed
and vice versa. Both approaches are of value and need to be considered
when evaluating the merits of different systems.

3. Performance

Figures 1–6 and Tables 1–8 show performance results from various sources.
Some of these runs were made explicitly for benchmarking the performance of a
particular system, other runs were made as part of a porting/tuning effort, and a
few of the runs were made for other reasons. As such, there has been no
systematic attempt made to identify the reasons why a particular code runs
faster on one machine than another. The authors assume that in some cases,
additional tuning could improve the performance of a particular code on a
particular machine. However, such tuning is beyond the scope of this report.
Furthermore, when a code is not locally written/maintained, there may be little
or no opportunity for the user to tune a code.

In the following CTH benchmark runs for Figure 1 and Table 2, the number of
computational cells was increased by a factor of 2 each time the number of
processors was doubled. This was done to maintain a constant number of
computational cells per processor, which keeps the computation to
communication ratio constant. In this set of benchmarks, the number of
iterations was fixed, meaning that perfect scaling results in constant benchmark
run times. The difference in the run time on the 64-processor Origin 2000 and the
128-processor Origin 2000 is the direct result of the increase in the average
memory latency as one increases the size of an Origin 2000.

For the runs in Figure 2 and Table 3, the grid was incrementally refined by
decreasing the characteristic cell length in each direction by the cubed root of two
each time the number of processors doubled. In these runs, the number of
iterations was not fixed. Instead, the number of iterations approximately
increased by the cube root of two each time the number of processors doubled,
since the time step decreases as a result of finer mesh. When ideal scaling occurs,
the Grind Time will decrease by half every time the number of processors is
doubled. This results from the units of Grind Time being microseconds/zone/cycle.
Since the time per cycle is expected to remain constant and the amount of work
per cycle doubled, the amount of time/zone/cycle should be halved. The
amount of time/cycle should remain constant, as in Table 2. It is worthwhile
noting how closely the performance of these runs matches the ideal performance.
Additionally, the performance of the 300-MHz Origin 2000 and the 400-MHz Sun
HPC 10000 is very similar for both these runs and those involving F3D (see
Figures 3 and 4 and Tables 4 and 5).

 4

Figures 3 and 4 and Tables 4–6 show the performance of two different versions of
the implicit CFD code F3D for three problem sizes. The problem sizes range
from 1-million to 206-million grid points without a significant decrease in the per
processor performance. This is an indication that it is possible to tune an HPC
code for a cache-based architecture. Tables 7 and 8 contain results for two other
CFD codes.

Figures 5 and 6 and Tables 9 and 10 demonstrate the effect on performance and
the waste of CPU time that can occur when an SMP becomes overloaded. The
program used for these measurements was the shared memory version of F3D.
It ran the 1-million grid point test case.

4. Summary

We have provided a number of observations and performance data from a
variety of sources for a number of representative codes. These codes were run
on the SGI Origin 2000 and the Sun HPC 10000. In many cases, there were also
runs made on other commonly used HPC systems. Additionally, some of the
tables provide comparisons of the performance achievable when using various
programming paradigms. The last two tables demonstrate the inefficiency of
allowing an SMP to become overloaded. It is hoped that this report and, in
particular, the figures and data tables will enable the reader to better evaluate the
merits of these systems in relation to his or her needs.

 5

Figure 1. CTH run times scaling the data set size in proportion to the number of
processors used (data set supplied by Raju Namburu of the U.S. Army
Research Laboratory, Aberdeen Proving Ground, MD).

0 10 20 30 40 50 60 70 80 90 100 110 120 1300
500
1000
1500
2000
2500
3000
3500
4000
4500
5000
5500
6000
6500
7000
7500
8000

Number of Processors

R
un
Ti
m
e
(s
ec
on
ds
)

SGI Origin 2000 (R12K 300 MHz - 600 MFLOPS, 64p)

SGI Origin 2000 (R12K 300 MHz, 128p)

Cray T3E-900 (900 MFLOPS)
IBM SP (135 MHz - 540 MFLOPS)

IBM SP Power3 (200 MHz - 800 MFLOPS)

SUN HPC1000 (400 MHz UltraSPARC II - 800 MFLOPS, 64p)

100 101 102

100

101

102

103

Number of Processors

G
rin
d
Ti
m
e
(m
ic
ro
se
co
nd
s/
zo
ne
-c
yc
le
)

SGI Origin 2000 (R12K 300 MHz - 600 MFLOPS, 128p)

SUN HPC 10000 (400 MHz UltraSPARC II - 800 MFLOPS, 64p)
2 SUN HPC 10000 SYSTEMS CONNECTED USING ATM (OC-12)

Ideal scaling for the SGI Origin 2000 based on 8 processor results

Ideal Scaling for the SUN HPC 10000 based on 8 processor results
IBM SP2 (66.7 MHz - 267 MFLOPS)

Figure 2. CTH run times (data set supplied by Steve Schraml of the U.S. Army Research
Laboratory, Aberdeen Proving Ground, MD).

 6

*
*

*
*
*
*
*
*
*
*
* *
* *

0 10 20 30 40 50 60 70 80 90 100 110 120 130
0

1000

2000

3000

4000

5000

6000

7000

8000

*

Sp
ee
d
in
tim
e
st
ep
s
pe
rh
ou
r

Number of Processors

SGI R12K Origin 2000 (128 p, 300-MHz system)

HP V2500 (16p, 440-MHz system) (Guide)

SUN HPC 10000 (64 p, 400-MHz system)

Figure 3a. The performance of the shared memory version of the F3D code when run on
modern scalable SMPs (1-million grid point test case).*

0 10 20 30 40 50 60 70 80 90 100 110 120 130
0

1000

2000

3000

4000

5000

6000

7000

8000

Sp
ee
d
in
tim
e
st
ep
s
pe
rh
ou
r

Number of Processors

Cray T3E-1200 (SHMEM)
SGI Origin 2000 (128 p 300-MHz system, SHMEM)
IBM SP (160-MHz system, MPI)

These results are courtesy of Marek Behr.

Figure 3b. The performance of the distributed memory version of the F3D code when
run on a modern scalable SMP/MPPs (1-million grid point test case).*

* The speeds have been adjusted to remove startup and termination costs.

 7

0 10 20 30 40 50 60 70 80 90 100 110 120 130
0

50

100

150

200

NUMBER OF PROCESSORS

SP
EE
D
IN
TI
M
E
ST
EP
S
PE
R
H
O
U
R

64 p SGI Origin 2000 (195-MHz, 24 GB system)
128 p SGI Origin 2000 (195-MHz)
SGI R12K Origin 2000 (128 P, 300-MHz system)

SUN HPC 10000 (64 processor, 400-MHz system)

Figure 4. The performance of the shared memory version of the F3D code when run on
modern scalable SMPs (59-million grid point test case).*

0 5 10 150
500
1000
1500
2000
2500
3000
3500
4000
4500
5000
5500
6000
6500
7000
7500
8000

Number of Processors

Ti
m
e
in
Se
co
nd
s

Wall clock time
User CPU time
System CPU time

Figure 5. The effect on performance and the consumption of CPU time from running a

parallel job on an overloaded HP V-Class.

* The speeds have been adjusted to remove startup and termination costs.

 8

0 10 20 300

500

1000

1500

2000

2500

3000

3500

4000

Number of Processors

Ti
m
e
in
Se
co
nd
s

Wall clock time
User CPU time
System CPU time

Figure 6. The effect on performance and the consumption of CPU time from running a

parallel job on an overloaded SGI Origin 2000.

Table 1. Miscellaneous benchmarking runs.

Program/Dataset SGI (300-MHz R12000 Origin)
(hh:mm/no. of processors)

Sun (400-MHz UltraSPARC II)
(hh:mm/no. of processors)

Gaussian 98 Ran Failed to run
Overflow (MPI version) 2:40/24 3:25/24
CTH/128.in 6:58/64

7:31/56
6:14/64

POP 3:18/16 Failed to compile
Gamess 0:19/12 0:12/12
Xpatch 4:23/1 6:23/1

 9

Table 2. CTH benchmark runs.a, b

System

Processor Speed

(MHz)

Peak Performance

(MFLOPS)

No. of
Processors

Run Time

(s)
SGI Origin 2000
(64-processor system)

300 600 1
2
4
8

16

1178
1439
1427
2089
1811

SGI Origin 2000
(128-processor system)

300 600 32
48
64
96

128

3144
3544
3423
3339
3676

Cray T3E-900 450 900 128 1732
IBM SP
(P2SC)

135 540 64
128

4822
4433

Sun HPC 10000 400 800 1
2
4
8

16
32
48
64

1971
1986
2092
2331
2506
2749
2501
2895

Sun HPC 10000
(96-processor dataset)

400 800 64 4391

Sun HPC 10000
(128-processor dataset)

400 800 64 5673

a Data set courtesy of Raju Namburu, U.S. Army Research Laboratory, Aberdeen Proving Ground, MD.
b The job size was scaled in proportion to the number of processors.

 10

Table 3. Additional CTH results.a, b

Grind Time

(µs/zone/cycle)

System

Processor
Speed
(MHz)

Peak Performance

(MFLOPS)

No. of
Processors

Actual Idealb
SGI Origin 2000
(128 processor)

300 600 1
2
4
8

16
32
48
64
96

36.979
20.479
10.355
7.2749
4.0035
2.0599
1.4815
1.2456
0.73997

NA
NA
NA

7.2749
3.6375
1.8187
1.2125
0.90936
0.60624

SGI Origin 2000
(128 processor)

195 390 1 53.155 NA

Sun HPC 10000 400 800 1
2
4
8

16
32
48
60
63
64

47.558
25.622
11.875
7.0330
3.7468
1.8792
1.2385
1.1170
1.1075
1.1332

NA
NA
NA

7.0330
3.5165
1.7583
1.1722
0.93773
0.89308
0.87913

2 Sun HPC 1000
connected using
ATM
(OC-12)

400 800 2
4
8

16
32
48
64
96

24.357
12.635
8.0182
4.0605
2.1539
1.5136
1.3593
0.92424

NA
NA

8.0182
4.0091
2.0046
1.3364
1.0023
0.66818

IBM SP (Power 2) 66.7 267 1
2
4
8

16
32
64

100.24
50.12
26.83
15.23
8.13
4.09
1.69

NA
NA
NA

15.230
7.615
3.808
1.904

a The job size was scaled in proportion to the number of processors (Kimsey et al. 1998; Schraml and Kimsey
 2000).
b The ideal values are extrapolated from the performance of runs using eight processors.

 11

Table 4. The performance of various versions of the F3D code when run on modern
scalable systems (1-million grid point test case).a

Speed

System
Peak Processor

Speed
(MFLOPS)

No. of
Processors Used

Version

(time steps/hr) MFLOPS
SGI R10K O2K 390 8 Compiler Directives 793 1.04E3
SGI R12K O2K 600 8 SHMEM 382 4.99E2
SGI R10K O2K 390 32 Compiler Directives 2138 2.79E3
SGI R12K O2K 600

600
32 SHMEM

Compiler Directives
989

2877
1.29E3
3.76E3

SGI R10K O2K 390 48 Compiler Directives 2725 3.56E3
SGI R12K O2K 600

600
48 SHMEM

Compiler Directives
1083
3545

1.42E3
4.63E3

SGI R10K O2K 390 64 Compiler Directives 2601 3.40E3
SGI R12K O2K 600

600
64 SHMEM

Compiler Directives
1050
3694

1.37E3
4.83E3

SGI R10K O2K 390 88 Compiler Directives 3619 4.73E3
SGI R12K O2K 600

600
88 SHMEM

Compiler Directives
1320
5087

1.73E3
6.65E3

Cray T3E-1200 1200 8 SHMEM 349 4.56E2
 32 1062 1.39E3
 48 1431 1.87E3
 64 1705 2.23E3
 88 2443 3.19E3
 128 2948 3.85E3
IBM SP 160 (MHz) 640 8 MPI 199 2.60E2
 32 342 4.47E2
 48 420 5.49E2
 64 423 5.52E2
 88 396 5.18E2
Sun HPC 10000 800 8 Compiler Directives 999 1.31E3
 32 2619 3.64E3
 48 3093 4.04E3
 56 3391 4.43E3
 64 2819 3.68E3
HP V-Class 1760 8 Compiler Directives 1632 2.13E3
 14 2392 3.13E3

a For additional details, see Behr et al. (2000).

 12

Table 5. The performance of the shared memory version of the F3D code when run on
modern scalable SMPs (59-million grid point test case).

Speed System Peak Processor Speed
(MFLOPS)

No. of Processors Used
(time steps/hr) MFLOPS

SGI R12K
Origin

600 1
16
32
48
64
96

124

2.3
33
59
73
91

135
153

1.79E2
2.57E3
4.59E3
5.68E3
7.08E3
1.05E4
1.19E4

Sun HPC
10000

800 1
8

16
32
48
56
64

2.1
15.1
26
45
61
70
73

1.63E2
1.18E3
2.02E3
3.50E3
4.75E3
5.45E3
5.68E3

Table 6. The performance of the shared memory version of the F3D code when run on
modern scalable SMPs (206-million grid point test case).

Speed System Peak Processor Speed
(MFLOPS)

No. of Processors Used
(time steps/hr) MFLOPS

SGI R12K
Origin

600 1
16
32
48
64
96

124

0.62
7.4

15.2
18
26
38
48

1.67E2
2.00E3
4.10E3
4.86E3
2.02E3
1.03E4
1.30E4

Table 7. A comparison of the performance of the shared memory implementation of the
CFD code Overflow and the PVM implementation of the same code.a

Run Time

(s)

System

Peak Processor Speed

(MFLOPS)

No. of Processors
Used

Shared Memoryb PVM
SGI R10K
Origin

390 1
4
8

16
31

959
318
184
129

96

N/A
335
191
117

N/Ac
a For a complete discussion of these results, see Hisley et al. (1998).
b The shared memory implementation combined compiler directives and the automatic parallelization facility

(-pfa).
c The 31-processor PVM run was not made because it was too difficult to decompose the grids with the

available tools.

 13

Table 8. The performance of LES (a CFD code using direct simulation of large eddies).a, b

System Peak Processor Speed
(MFLOPS)

No. of Processors Used Run Time
(s)

SGI R12K Origin 600 1 1232
 2 619
 4 314
 16 153

a 64 H 64 grid.
b The program was parallelized using the SPMD programming style with OpenMP.

Table 9. The effect on performance and the consumption of CPU time from running a
parallel job on an overloaded HP V-Class.a

No. of Processors Used Wall Clock Time
(s)

User CPU Time
(s)

System CPU Time
(s)

1 3524 3244 8
2 1698 3301 72
3 1203 3303 186
4 1974 3625 2302
5 1871 3630 2696
6 2554 3837 4955
7 3166 4051 7089
8 2915 3915 7223

a The job was run for 200 time steps.

Table 10. The effect on performance and the consumption of CPU time from running a
parallel job on an overloaded SGI Origin 2000.a

No. of Processors Used Wall Clock Time
(s)

User CPU Time
(s)

System CPU Time
(s)

1 503 390 5
5 225 512 7

10 256 729 9
15 360 935 11
20 1322 2263 36
25 2119 3423 138
30 3691 4414 188

a The job was run for 40 time steps.

 14

5. References

Behr, M., D. M. Pressel, and W. B. Sturek, Sr. ʺComments on CFD Code
Performance on Scalable Architectures.‶ Computer Methods in Applied
Mechanics, New York: Elsevier Science LTD, 2000.

Hisley, D. M., G. Agrawal, and L. Pollock. ʺPerformance Studies of the
Parallelization of a CFD Solver on the Origin 2000.‶ Proceedings of the 21st
Army Science Conference, Department of the Army, 1998.

Kimsey, K. D., S. J. Schraml, and E. S. Hertel. ʺScalable Computation in
Penetration Mechanics.‶ International Journal on Advances in Engineering
Software Including Computing Systems in Engineering, vol. 29, pp. 209–215,
1998.

Mohan, R. Personal communication with D. Pressel. U.S. Army Research
Laboratory, Aberdeen Proving Ground, MD, 1999.

Namburu, R. Personal communication with D. Pressel. U.S. Army Research
Laboratory, Aberdeen Proving Ground, MD, 1999.

Schraml, S. J., and K. D. Kimsey. ʺScalability of the CTH Hydrodynamics Code
on the HPC 10000 Architecture.‶ ARL-TR-2173, U.S. Army Research
Laboratory, Aberdeen Proving Ground, MD, February 2000.

Shires, D. Personal communication with D. Pressel. U.S. Army Research
Laboratory, Aberdeen Proving Ground, MD, 2000.

Wierschke, S. G., MAJ. ʺCHSSI Semiannual Report: Computational Chemistry
and Materials Science (CCM).‶ U.S. Air Force Research Laboratory,
15 October 1997.

 15

INTENTIONALLY LEFT BLANK.

 16

Glossary

cc-NUMA Cache coherent nonuniform memory access

CPU Central Processing Unit

CTA Computational Technology Area

DC Distributed Center

HPC High-Performance Computing

HPF High Performance Fortram

MFLOPS Million Floating Point Operations Per Second

MPI Message Passing Interface

MPP Massively Parallel Processor

MSRC Major Shared Resource Center

PVM Parallel Virtual Machine

SHMEM Low latency message passing library developed by CRAY
Research for the T3D and T3E product lines.

SMP Symmetric Multiprocessor—a term normally only applied to
shared memory systems using hardware memory coherency
protocols.

SPMD Single Program Multiple Data

 17

INTENTIONALLY LEFT BLANK.

 18

NO. OF NO. OF
COPIES ORGANIZATION COPIES ORGANIZATION

 2 DEFENSE TECHNICAL 1 DIRECTOR
 INFORMATION CENTER US ARMY RESEARCH LAB
 DTIC OCA AMSRL CI AI R
 8725 JOHN J KINGMAN RD 2800 POWDER MILL RD
 STE 0944 ADELPHI MD 20783-1197
 FT BELVOIR VA 22060-6218
 3 DIRECTOR
 1 HQDA US ARMY RESEARCH LAB
 DAMO FDT AMSRL CI LL
 400 ARMY PENTAGON 2800 POWDER MILL RD
 WASHINGTON DC 20310-0460 ADELPHI MD 20783-1197

 1 OSD 3 DIRECTOR
 OUSD(A&T0/ODDR&E(R) US ARMY RESEARCH LAB
 DR RJ TREW AMSRL CS IS T
 3800 DEFENSE PENTAGON 2800 POWDER MILL RD
 WASHINGTON DC 20301-3800 ADELPHI MD 20783-1197

ABERDEEN PROVING GROUND 1 COMMANDER GENERAL
 US ARMY MATERIAL CMD
 2 DIR USARL AMCRDA TF
 AMSRL CI LP (BLDG 305) 5001 EISENHOWER AVE
 ALEXANDRIA VA 22333-0001

 1 INST FOR ADVNCD TCHNLGY

 THE UNIV OF TEXAS AT Q
 AUSTIN

 3925 W BRAKER LN STE 400
 AUSTIN TX 78759-5316

 1 DARPA
 SPECIAL PROJECTS OFFICE
 J CARLINI
 3701 N FAIRFAX DR
 ARLINGTON VA 22203-1714

 1 US MILITARY ACADEMY
 MATH SCI CTR EXCELLENCE
 MADN MATH
 MAJ HUBER
 THAYER HALL
 WEST POINT NY 10996-1786

 1 DIRECTOR
 US ARMY RESEARCH LAB
 AMSRL D
 DR D SMITH
 2800 POWDER MILL RD
 ADELPHI MD 20783-1197

 19

NO. OF NO. OF
COPIES ORGANIZATION COPIES ORGANIZATION

 1 PROGRAM DIRECTOR 1 ARMY AEROFLIGHT
 C HENRY DYNAMICS DIRECTORATE
 1010 N GLEBE RD STE 510 R MEAKIN M S 258 1
 ARLINGTON VA 22201 MOFFETT FIELD CA 94035-1000

 1 DPTY PROGRAM DIRECTOR 1 NAVAL RSCH LAB
 L DAVIS HEAD OCEAN DYNAMICS
 1010 N GLEBE RD STE 510 & PREDICTION BRANCH
 ARLINGTON VA 22201 J W MCCAFFREY JR CODE 7320
 STENNIS SPACE CENTER MS
 1 DISTRIBUTED CENTERS 39529
 PROJECT OFFICER
 V THOMAS 1 US AIR FORCE WRIGHT LAB
 1010 N GLEBE RD STE 510 WL FIM
 ARLINGTON VA 22201 J J S SHANG
 2645 FIFTH ST STE 6
 1 HPC CTRS PROJECT MNGR WPAFB OH 45433-7912
 J BAIRD
 1010 N GLEBE RD STE 510 1 US AIR FORCE PHILIPS LAB
 ARLINGTON VA 22201 OLAC PL RKFE
 CAPT S G WIERSCHKE
 1 CHSSI PROJECT MNGR 10 E SATURN BLVD
 L PERKINS EDWARDS AFB CA 93524-7680
 1010 N GLEBE RD STE 510
 ARLINGTON VA 22201 1 NAVAL RSCH LAB
 DR D PAPACONSTANTOPOULOS
 1 RICE UNIVERSITY CODE 6390
 MECHANICAL ENGRNG & WASHINGTON DC 20375-5000
 MATERIALS SCIENCE
 M BEHR MS 321 1 AIR FORCE RSCH LAB DEHE
 6100 MAIN ST R PETERKIN
 HOUSTON TX 77005 3550 ABERDEEN AVE SE
 KIRTLAND AFB NM 87117-5776
 1 J OSBURN CODE 5594
 4555 OVERLOOK RD 1 NAVAL RSCH LAB
 BLDG A49 RM 15 RSCH OCEANOGRAPHER CNMOC
 WASHINGTON DC 20375-5340 G HEBURN
 BLDG 1020 RM 178
 1 NAVAL RSCH LAB STENNIS SPACE CENTER MS
 J BORIS CODE 6400 39529
 4555 OVERLOOK AVE SW
 WASHINGTON DC 20375-5344 1 AIR FORCE RSCH LAB
 INFORMATION DIRECTORATE
 1 WL FIMC R W LINDERMAN
 B STRANG 26 ELECTRONIC PKWY
 BLDG 450 ROME NY 13441-4514
 2645 FIFTH ST STE 7
 WPAFB OH 45433-7913 1 SPAWARSYSCEN D4402
 R A WASILAUSKY
 1 NAVAL RSCH LAB BLDG 33 RM 0071A
 R RAMAMURTI CODE 6410 53560 HULL ST
 WASHINGTON DC 20375-5344 SAN DIEGO CA 92152-5001

 20

NO. OF NO. OF
COPIES ORGANIZATION COPIES ORGANIZATION

 1 USAE WATERWAYS 1 UNIVERSITY OF TENNESSEE
 EXPERIMENT STATION COMPUTER SCIENCE DEPT
 CEWES HV C S MOORE
 J P HOLLAND 1122 VOLUNTEER BLVD
 3909 HALLS FERRY RD STE 203
 VICKSBURG MS 39180-6199 KNOXVILLE TN 37996-3450

 1 US ARMY CECOM RSCH
ABERDEEN PROVING GROUND DEVELOPMENT & ENGRNG CTR

 AMSEL RD C2
 33 DIR USARL B S PERLMAN
 AMSRL CI FT MONMOUTH NJ 07703
 N RADHAKRISHNAN
 AMSRL CI H 1 SPACE & NAVAL WARFARE
 C NIETUBICZ SYSTEMS CTR
 W STUREK K BROMLEY CODE D7305
 AMSRL CI HC BLDG 606 RM 325
 P CHUNG 53140 SYSTEMS ST
 J CLARKE SAN DIEGO CA 92152-5001
 D HISLEY
 M HURLEY 1 DIRECTOR
 A MARK DEPARTMENT OF ASTRONOMY
 R MOHAN P WOODWARD
 R NAMBURU 356 PHYSICS BLDG
 D PRESSEL 116 CHURCH ST SE
 D SHIRES MINNEAPOLIS MN 55455
 R VALISETTY
 C ZOLTANI 1 RICE UNIVERSITY
 AMSRL CI HS MECHANICAL ENGRNG &
 D BROWN MATERIALS SCIENCE
 T KENDALL T TEZDUYAR MS 321
 M KNOWLES 6100 MAIN ST
 P MATTHEWS HOUSTON TX 77005
 R PRABHAKARAN
 T PRESSLEY 1 ARMY HIGH PERFORMANCE
 K SMITH COMPUTING RSCH CTR
 S THOMPSON B BRYAN
 AMSRL WM BC 1200 WASHINGTON AVE
 K HEAVEY S MINNEAPOLIS MN 55415
 J SAHU
 P WEINACHT 1 ARMY HIGH PERFORMANCE
 AMSRL WM BF COMPUTING RSCH CTR
 H EDGE G V CANDLER
 AMSRL WM T 1200 WASHINGTON AVE
 B BURNS S MINNEAPOLIS MN 55415
 AMSRL WM TA 1 NAVAL CMD CNTRL &
 D KLEPONIS OCEAN SURVEILLANCE CTR
 M NORMANDIA L PARNELL
 AMSRL WM TC NCCOSC RDTE DIV D3603
 R COATES 49590 LASSING RD
 K KIMSEY SAN DIEGO CA 92152-6148
 S SCHETTLER
 S SCHRAML

 21

INTENTIONALLY LEFT BLANK.

 22

 23

 24

INTENTIONALLY LEFT BLANK.

	Acknowledgments
	Contents
	List of Figures
	List of Tables
	1.Introduction
	2.Brief Observations
	3.Performance
	4.Summary
	5.References
	Glossary

